__Solution__
m + m + 40

^{0}= 180^{0}
2m + 40

^{0}= 180^{0}
2m + 40

^{0}– 40^{0}= 180^{0}– 40^{0}
2m + 0 = 140

^{0}
2m = 140

^{0}^{}

__2m__=

__140__

^{0}

2 2

m
= 70

^{0}

__Hence the value of m is 70__^{0}
m + m + 40^{0} = 180^{0}

2m + 40^{0} = 180^{0}

2m + 40^{0} – 40^{0} = 180^{0} – 40^{0}

2m + 0 = 140^{0}

2m = 140^{0}

2 2

m
= 70^{0}

Find perimeter of the following semi-circle

Perimeter
= ∏__D__ + D

2

= ( ^{11}__22__ X
^{70}__490__ )
+ 490

=
(11 x 70 ) + 490

=
770 + 490

= 1260

Hence
Perimeter is 1260 m

Perimeter of the following triangle is 140. Find the
value of a.

Perimeter = total of all sides

100 = 2a +
5a + 3a

100 = 10a

a = 10

if 11w = 25; then find w

11w = 25

11
11

w = 2^{3}/11

Find the perimeter of the circle below

Diameter = 2xr =2x70=140

So, D=140mm

Perimeter = ∏ x D

= __22__ x ~~140~~^{70}

= 22 x 70

= 1540

Find the value of x in the following figure

2x + 2x + 8x + 8x = 360^{0}

4x + 16x = 360^{0}

20x = 360^{0}

20 20

X = 18^{0}

Find area of the following rectangle (diagram not to scale)

Area = Length x width

= 38 x 20

=760m^{2}

Find area of the following circular prism which is closed on both
sides

Area
= 2∏rh + 2∏ x r^{2}

=(2
x __22__ x ~~35~~^{5} x 100) + (2 x __22__ x ~~35~~^{5}
x 35)

=(2
x 22 x 5 x 100) + (2 x 22 x 5 x 35)

=(44
x 500) + (44 x 5 x 35)

=22000+
7700

=29700

Perimeter of the
following rectangle is 44mm. Find the value of a.

Perimeter = 4
x side

44 = 4(a - 5)

44 = 4a – 20

44 + 20 = 4a

64 = 4a

4 4

16 = a

Find
perimeter of the square below

Perimeter =
4 x
side

= 4 x 200

= 800

Hence perimeter is 800 mm.

Find
the perimeter of the following rectangle. (diagram not to scale)

__Solution__

*Length=60 cm, Width = 20 cm*

__Hence Perimeter is 160cm__

Perimeter
= 2(length + width)

= 2( 60 + 20)

=2 x 80

=160cm

Subscribe to:
Posts (Atom)