Saturday, March 8, 2014

DEGREES B10

Find t in the figure below.



Solution

4t +  t + 900 = 1800

5t = 1800 - 900

5t = 900

5t = 900       [dividing by 4 on both sides]
5       5


c = 180

DEGREES B9

Find c in the figure below.


Solution

2c +  c + 900 = 1800

3c = 1800 - 900

3c = 900

3c = 900       [dividing by 4 on both sides]
3       3


c = 300

DEGREES B8

Find a in the figure below.



Solution

3a + 1230 = 1800

3a = 1800 - 1230

3a = 1170

3a = 1170       [dividing by 4 on both sides]
3       3

a = 390


RATIOS C8

If 2: 8 = 10 : m; Find the value of m.

Solution

2   =  10                            [cross multiply]
8        m

2 x m = 10 x 8

2m = 80


2m = 80                      [divide by 2 on both sides]
2        2

m = 40

Hence the value of m is 40


TRY THIS…………


If 8:3 = 11: w; Find the value of w.

DEGREES B7

Find m in the figure below.


Solution

3m + m + 960 + 1080 = 3600

4m + 2040 = 360[collecting like terms]

4m = 3600 - 2040

4m = 1560

4m = 1560       [dividing by 4 on both sides]
4        4

m = 390


RATIOS C7

If 7: 5 = 14:B; Find the value of B.

Solution

7   =  14                            [cross multiply]
5        B

7 x B = 5 x 14

7B = 70


7B = 70                      [divide by 7 on both sides]
7        7

B = 10

Hence the value of B is 10


TRY THIS…………


If 7:2 = 14: c; Find the value of c.

DEGREES B7

Find a in the figure below.

Solution

2a + 80 = 1800

2a = 1800 - 800

2a = 1000

2a = 1000       [dividing by 4 on both sides]
2       2


a = 500

ALGEBRA B59

Simplify 20(4k)

Solution

 =20(4k)

=20 x 4 x k

=(20 x 4) x k

=(80) x k

=80k

Hence 20(4k) = 80k



TRY THIS…………


Simplify 18(5e)

RATIOS C6

If 3: 5 = 9:h; Find the value of h.

Solution

3   =   9                            [cross multiply]
5        h

3 x h = 5 x 9

3h = 45


3h = 45                      [divide by 3 on both sides]
3        3

h = 15

Hence the value of h is 15


TRY THIS…………


If 8:4 = 14: c; Find the value of c.

DEGREES B5

Find a in the figure below.



Solution

3a + 72 = 1800

3a = 1800 - 720

3a = 1080

3a = 1080       [dividing by 4 on both sides]
3       3


a = 360

DEGREES B6

Find a in the figure below.



Solution

3a + 81 = 1800
3a = 1800 - 810
3a = 990
3a = 990       [dividing by 4 on both sides]
3       3


a = 330

RATIOS C5

If 7: 5 = 14 : B; Find the value of B.

Solution

7   =  14                            [cross multiply]
5        B

7 x B = 5 x 14

7B = 70


7B = 70                      [divide by 7 on both sides]
7        7

B = 10

Hence the value of B is 10


TRY THIS…………


If 10:4 = 14: y; Find the value of y.

ALGEBRA B58

Simplify 20p + 6m + 5m + 7p

Solution

=20p + 6m + 5m + 7p

=20p + 7p  + 6m + 5m ( collecting the like terms)

= 27p + 11m ( adding the like terms)


Hence 10p + 5m + 2m + 7p = 27p + 11m


TRY THIS………………..


Simplify 20p + 7m + 8m + 9p

RATIOS C4

If 6: 5 = 18 : B; Find the value of B.

Solution

6   =  18                            [cross multiply]
5        B

6 x B = 5 x 18

6B = 90


6B = 90                      [divide by 6 on both sides]
6        6

B = 15

Hence the value of B is 15


TRY THIS…………


If 7:4 = 14: c; Find the value of c.

DEGREES B4

Find a in the figure below.



Solution

3a + a + 160 + 40 = 3600

4a + 2000 = 360[collecting like terms]

4a = 3600 - 2000

4a = 1600

4a = 1600       [dividing by 4 on both sides]
4       4

a = 400


RATIOS C3

If 6: 5 = 10 : W; Find the value of W.

Solution

6   =  10                            [cross multiply]
5        W

6 x W = 5 x 10

6W = 50


6W = 50                      [divide by 6 on both sides]
6        6

W = 82/6

Hence the value of W is 82/6



TRY THIS…………


If 9:3 = 14: c; Find the value of c.

BODMAS B5

Find the value of 30 – 100 ÷ 20 x 2

Solution

Here we use BODMAS

1st we divide, then we multiply, lastly we subtract.

= 30 – 100 ÷ 20 x 2

=  30 – 5  x 2 (after dividing)

= 30 – 10 (after multiplication)

= 20    (then we get 20 after subtraction)


TRY THIS…………………………………

Find the value of 120 – 64 ÷ 8 x 8

DEGREES B3

Find a in the figure below



Solution

3a + 72 + 30 = 1800

3a + 1020 = 180[collecting like terms]

3a = 1800 - 1020

3a = 780

3a = 780       [dividing by 4 on both sides]
3       3


a = 260

RATIOS C2

If 6: 8 = 11:B; Find the value of B.

Solution

6   =  11                            [cross multiply]
8       B

6 x B = 11 x 8

6B = 88


6B = 88                      [divide by 6 on both sides]
6        6

B = 144/6 = 142/3

Hence the value of B is 142/3


TRY THIS…………


If 7:2 = 11: h; Find the value of h.

DEGREES B1

Find a in the figure below


Solution

3a + a + 72 + 20 = 1800

4a + 920 = 180[collecting like terms]

4a = 1800 - 920

4a = 880

4a = 880       [dividing by 4 on both sides]
4        4

a = 220

RATIOS C1

If 3:2 = 11:3B; Find the value of B.

Solution

3   =  11                            [cross multiply]
2       3B

3x3B = 11 x 2

9B = 22


9B = 22                      [divide by 9 on both sides]
9        9

B = 24/9

Hence the value of B is 24/9



TRY THIS…………

If 7:2 = 11:4B; Find the value of B.


Thursday, March 6, 2014

PERIMETER A6

Find perimeter of the circle below


solution


P = ∏ x D     D= diameter

   = 22 x 840120
        71

   = 22 x 120

   = 2640m


Hence perimeter = 2640metres. 


PERIMETER A5

Find the perimeter of the square below.


Solution

Perimeter = 4  x  side

                = 4 x 35

                = 140


hence perimeter 140 mm.

AREAS A5

Area of triangle is 150cm2. Find its base if the height is 50cm.

Solution


150  =  1 x base x height
             2

Let base = b


150 =  1 x b  x 50
           2

150 =  1 x b x 5025,     canceling by 2
           21

150 =  1 x b  x  25

150 = 25b
            
6150  =  125b
125         125

b = 6cm

hence base is 6cm



TRY THIS..............

Area of triangle is 180cm2. Find its base if the height is 60cm.

PERIMETER A4

Perimeter of a rectangle is 260cm. If its width is 50cm, find its length.

Solution

Perimeter = 2(length + width)

260= 2(L + 50)

260=2L + 100

260-100 = 2L + 100 – 100

160 = 2L+0

160 = 2L

801601 2L
    12       1 2

L = 80

Hence Length is 80cm.


TRY THIS……………


Perimeter of a rectangle is 340cm. If its width is 40cm, find its length.

FRACTIONS C2

Find 3/5 of 200 pupils.

Solution

=3/5 x 200

=3/5 x 20040

=3 x 40

=120

120 pupils answer


TRY THIS………….

Find 3/8 of 400 pupils


PERIMETER A3

Area of rectangle is 160cm2. If its length is 20cm, find its width.

Solution

Area = Length x width

Let width=w,

160  = 20  x  w

160 = 20w

        8160    =    120w
         1 20           120

w = 8cm


Hence width is 8cm.

FRACTIONS C1

Find 3/5 of 400 pupils.

Solution

=3/5 x 400

=3/5 x 40080

=3 x 80

=240

240 pupils answer



TRY THIS………….


Find 3/20 of 800 pupils

AREAS A4

Area of rectangle is 80cm2. if its length is 16cm, find its width.

Solution

Area = Length x width

Let width=w,

80  = 16  x  w

80 = 16w

        580    =    116w
    1 16           116

w = 5cm


Hence width is 5cm.


TRY THIS...............

Area of rectangle is 64cm2. if its length is 16cm, find its width.


BODMAS B4

Evaluate 50 ÷ 2 – 7.

Solution

We apply BODMAS.

= 50 ÷ 2 – 7

= 25 - 7 [after division]

= 18  [after subtraction]


TRY THIS…………


Evaluate 90 ÷ 9 – 16

PERIMETER A2

Perimeter of a rectangle is 200cm. If its width is 40cm, find its length.

Solution

200 = 2(length + width)

200= 2(L + 40)

200=2L + 80

200-80 = 2L + 80 – 80

120 = 2L+0

120 = 2L

601201 2L
    12       1 2

L = 60


Hence Length is 60cm.


TRY THIS........................

Perimeter of a rectangle is 300cm. If its width is 50cm, find its length.

BODMAS B3

Evaluate 60 ÷ 2 – 7

Solution

We apply BODMAS.

= 60 ÷ 2 – 7

= 30 - 7 [after division]

= 23  [after subtraction]


TRY THIS…………


Evaluate 93 ÷ 3 – 1

AREAS A3

Area of rectangle is 240cm2. Find length if width is 10cm.

Solution

    Area = Length x width

    240  = L  x  10

    240 = 10L

   24240    =    110L
    1 10          110

L = 24cm


Hence length is 24cm


TRY THIS....................

Area of rectangle is 140cm2. Find length if width is 10cm.

ALGEBRA B57

Simplify 11(4k)

Solution

 =11(4k)

=11 x 4 x k

=(11 x 4) x k

=(44) x k

=44k

Hence 11(4k)=44k


TRY THIS…………


Simplify 18(2k)

BODMAS B2

Find the value of 30 – 60 ÷ 20 x 2

solution

Here we use BODMAS

1st we divide, then we multiply, lastly we subtract.

= 30 – 60 ÷ 20 x 2

=  30 – 3  x 2 (after dividing)

= 30 – 6 (after multiplication)

= 24    (then we get 24 after subtraction)


TRY THIS…………………………………

Find the value of 100 – 60 ÷ 10 x 8

AREAS A3

Area of rectangle is 550cm2. Find length if width is 5cm.

Solution

Area = Length x width

550  = L  x  5

550 = 5L

110550 =    15L
    1 5          15

L = 110cm

Hence length is 110cm

TRY THIS..............

Area of rectangle is 90cm2. Find length if width is 5cm.